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ABSTRACT: A novel transition-metal-catalyzed rearrange-
ment of silylated cyclopropenes to the corresponding
allenes is described. The presence of both the trimethylsilyl
group on the cyclopropene and the platinum catalyst are
crucial for this rearrangement.

The rearrangement of cyclopropenes to allenes under thermal
and photochemical conditions has been documented exten-

sively, yet the corresponding metal-catalyzed reaction is virtually
unprecedented.1 The metal-catalyzed opening of cyclopropenes
leads to various end products,2,3 typically involving the formation
of metallacyclobutene or vinyl alkylidene intermediates. Some of
these alkylidenes, such as the Grubbs-type alkylidene complexes,
are stable enough to be isolated,4 whereas many putative gold
carbene complexes5 exist transiently. We surmised that the metal
carbenoids derived from opening of silylated cyclopropenes
would take a different reaction course to generate new end
products, such as allenes, because of the β-cation-stabilizing
effect of silicon.6

To verify this, we compared the reactions of cyclopropenes 1a
and 1b containing a trimethylsilyl substituent with those of the
corresponding unsilylated cyclopropenes 1c and 1d (Scheme 1).
When treated with a catalytic amount of platinum dichloride
(5 mol %) in dichloromethane at 50 �C, silylated cyclopropenes
1a and 1b afforded allenes 2a and 2b, respectively, in good yields,
whereas the corresponding unsubstituted cyclopropenes 1c
and 1d provided only intractable material without any sign of
allenes 2c and 2d. This clearly indicates that the silyl substituent
is required for the rearrangement of cyclopropenes to the
corresponding allenes.

To further define the structural requirements for this rearran-
gement of cyclopropenes to allenes, we examined the behavior of
silyl-substituted 3,3-diphenylcyclopropene 3 (Scheme 2). In this
case, however, only silylated indene 5was generated, presumably
via the formation of vinyl carbenoid 4.7 On the other hand,
silylated cyclopropene 6 containing a benzyl group led to the
exclusive formation of allene 7 without any indene 8.

The relatively facile preparation and better reaction profiles of
non-C3-substituted silylated cyclopropenes relative to other cy-
clopropenes prompted us to choose them as the substrate platform
for further exploration of the rearrangement of cyclopropenes to
allenes. These non-C3-substituted cyclopropenes were prepared
by the C�Si bond insertion method recently developed in our
laboratory.8 Herein we describe the first efficient metal-catalyzed
rearrangement of silylated cyclopropenes to the corresponding
allenes.

To further investigate the scope of the initial rearrangement
demonstrated by silylated cyclopropenes 1a, 1b, and 6 to the

corresponding allenes 2a, 2b, and 7, we examined other conditions
and different catalysts (Table 1). As opposed to the formation of
allene 2a in 95% yield from cyclopropene 1a using platinum
chloride (entry 1),9 thermal conditions alone over the 50�110 �C
range were not effective, and 1a was recovered intact (entry 2).
A cationic gold complex,10 although not effective at room tem-
perature (entry 3), provided the desired allene 2a at an elevated
temperature in 65% yield along with an unidentified byproduct
(entry 4). Other metal complexes such as Rh2(O2CCF3)4, PtCl2-
(PPh3)2, and RuCl2(PPh3)3 were virtually inert toward the
substrate, and the starting material was recovered unconsumed
in each case(entries 5�7).

Relying on the reported method,8 we prepared a variety of
silylated cyclopropenes 9a�j and examined their conversion to
the corresponding allenes (Table 2). The simple alkyl chain-
substituted cyclopropene 9a afforded allene 10a in excellent yield
(entry 1), but the reaction of 3-butenyl-substituted cis and trans

Scheme 1. Contrasting Reactivities of Silylated and Unsily-
lated Cyclopropenes toward a Platinum Catalyst

Scheme 2. C�H Functionalization versus Allene Formation
from Differently Substituted Silylated Cyclopropenes
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isomers of 9b was not satisfactory (entry 2).11 Similarly, several
byproducts12 were formed from cyclopropene 9c containing a
geranyl moiety, although the desired allene was also generated
(entry 3). These results suggest that the double bond near the
reaction center interferes with the rearrangement. To explore the
compatibility of unsaturation, we introduced structural variations
in the unsaturated moiety and found that cyclic alkenes were
tolerated. Thus, cyclopropenes 9d�f all underwent rearrange-
ment to the corresponding allenes 10d�f in good yields (entries
4�6). However, 9g with a tetrasubstituted exocyclic double
bond did not provide the desired allene 10g (entry 7). Alkenyl
and alkynyl substituents at the remote site were tolerated, with
cyclopropenes 9h�j providing allenes 10 h�j in excellent yields
(entries 8�10).13

It was observed that a proximal alkene functionality such as
that in 9b interfered with the reaction. We surmised that this is
the consequence of a putative interaction between Lewis acidic
platinum and the alkene during the reaction. If this is indeed the
case, then other basic functionalities (e.g., ether) should interfere
with the process in a similar manner. To verify this hypothesis, we
prepared cyclopropenes 9k�o containing ether linkages at
various distances from the cyclopropene moiety and examined
their rearrangements (Table 3). While R-alkoxy-substituted
substrate 9k did not produce the corresponding allene 10k
(entry 1), the other alkoxy-substituted substrates 9l�o afforded
allenes 10l�o in good yields (entries 2�5).

As a further demonstration of the synthetic utility and effec-
tiveness of the current allene synthesis,14 a three-step procedure
without purification of the intermediates was developed
(Scheme 3). With this protocol, hydrocinnamaldehyde 11 could
be transformed to the corresponding allene 2a in 57% overall yield.

In light of the known carbophilic Lewis acidity of the platinum
complex,15 several plausible mechanistic pathways can be pro-
posed (Scheme 4). The β-cation-stabilizing effect of a silyl group
would favor the formation of intermediate 12, which could
undergo three different structural reorganization processes. We
surmised that the formation of 13 from 12 via a C�C bond
migration should be quite reasonable because of the relief of ring
strain.16 A subsequent [1,2]-alkyl shift17 in 13 would provide the
observed allene products. Alternatively, C�Si bond migration
leading to 14 followed by a [1,2]-C�C bond shift would also be
quite plausible. In another pathway, the formation of regioiso-
meric intermediate 16 via the cycloreversion of 15 followed by a
[1,2]-silyl shift18 would be equally possible.19

To gainmore insight into the reactionmechanism, isotopically
labeled cyclopropene 17 was prepared and subjected to the
reaction conditions for allene formation (Scheme 5). This

exclusively afforded 13C-labeled allene 18 in which the alkyl
group remained connected to the original 13C-labeled carbon.
This clearly rules out the possibility of a [1,2]-alkyl shift involving
intermediate 13 and supports the other pathways with inter-
mediates 14 and 16. Unfortunately, the current experiment with
13C-labeled cyclopropene 17 could not distinguish the remaining
two pathways.

In conclusion, we have developed an efficient metal-catalyzed
rearrangement of silylated cyclopropenes to the corresponding
allenes. Both the electronic effect of a silyl substituent on the
cyclopropene and the presence of the platinum catalyst have
been shown to be essential for this reaction. The mild reaction
conditions are in stark contrast to those of thermal or photo-
chemical reactions. Good overall functional-group tolerance was
also recognized, except for several cases where alkene and oxygen
substituents interfered with the reaction. Further mechanistic
studies and broadening of the scope of this new rearrangement
will be reported in due course.

Table 1. Catalyst Screening for Allene Formation Table 2. Rearrangement of Cyclopropenes Containing
Unsaturationa

aA 5 mol % catalyst loading was used. b Isolated yields. c trans-9b
afforded 10b along with an unknown byproduct, but cis-9b did not give
any allene. dAllene 10c was contaminated with several unidentifiable
byproducts. eDecomposition of 10e was observed with an extended
reaction time. fAllene 10g was not observed.
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